Hyperbolic Plykin Attractor Can Exist in Neuron Models

نویسندگان

  • Vladimir N. Belykh
  • Igor Belykh
  • Erik Mosekilde
چکیده

Strange hyperbolic attractors are hard to find in real physical systems. This paper provides the first example of a realistic system, a canonical three-dimensional (3D) model of bursting neurons, that is likely to have a strange hyperbolic attractor. Using a geometrical approach to the study of the neuron model, we derive a flow-defined Poincaré map giving an accurate account of the system’s dynamics. In a parameter region where the neuron system undergoes bifurcations causing transitions between tonic spiking and bursting, this two-dimensional map becomes a map of a disk with several periodic holes. A particular case is the map of a disk with three holes, matching the Plykin example of a planar hyperbolic attractor. The corresponding attractor of the 3D neuron model appears to be hyperbolic (this property is not verified in the present paper) and arises as a result of a two-loop (secondary) homoclinic bifurcation of a saddle. This type of bifurcation, and the complex behavior it can produce, have not been previously examined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hyperbolic Plykin Attractor Can Exist in Neuron Models

Strange hyperbolic attractors are hard to find in real physical systems. This paper provides the first example of a realistic system, a canonical three-dimensional (3D) model of bursting neurons, that is likely to have a strange hyperbolic attractor. Using a geometrical approach to the study of the neuron model, we derive a flow-defined Poincaré map giving an accurate account of the system’s dy...

متن کامل

Uniformly Hyperbolic Attractor of the Smale-Williams Type for a Poincaré Map in the Kuznetsov System

Hyperbolic systems of dissipative type, contracting the phase space volume, manifest robust attractors. There are several classes of discrete time systems which produce hyperbolic nontrivial attractor – like the Plykin attractors [P] or the Smale attractors [KH]. Recently, Kuznetsov [K] proposed a continuous model for which there is a good numerical evidence of the existence of an uniformly hyp...

متن کامل

Global attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$

We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions  $ u(x,0) = u_0 (x)$  and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ;  f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...

متن کامل

Hyperbolic attractor in a system of coupled non-autonomous van der Pol oscillators: Numerical test for expanding and contracting cones

We present numerical verification of hyperbolic nature for chaotic attractor in a system of two coupled non-autonomous van der Pol oscillators (Kuznetsov, Phys. Rev. Lett., 95, 144101, 2005). At certain parameter values, in the four-dimensional phase space of the Poincaré map a toroidal domain (a direct product of a circle and a three-dimensional ball) is determined, which is mapped into itself...

متن کامل

An example of physical system with hyperbolic attractor of Smale – Williams type S . P . Kuznetsov

A simple and transparent example of a non-autonomous flow system, with hyper-bolic strange attractor is suggested. The system is constructed on a basis of two coupled van der Pol oscillators, the characteristic frequencies differ twice, and the parameters controlling generation in both oscillators undergo a slow periodic counter-phase variation in time. In terms of stroboscopic Poincaré section...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005